Name: _	KEY
UFID#:	

PHA 5127

First Exam Fall 2012

On my honor, I have neither given nor received unauthorized aid in doing this assignment.

Name

Question Set/Points

- I. 30 pts
- II. 20 pts
- III. 20 pts
- IV 15 pts
- V. 25 pts
- VI. 20 pts
- VII. 15 pts
- VIII. 20 pts
- IX. 35 pts

TOTAL: 200 pts

Name:	
UFID#: _	

Question Set I (True or False)

(30 points)

True (A) or False (B). On the bubble sheet mark A for true or B for false. Assume passive diffusion as the driving force for distribution.

- 1: (T) F Assume a drug that is eliminated through metabolism. The drug's plasma concentration decreases by 4 ng/ml every 2 hours. It is likely that the enzymes involved in the metabolism are saturated.
- 2: T F Assume a drug eliminated through enzymatic metabolism. The drug's plasma concentration decreases by 4 ng/ml every 2 hours. The elimination rate constant describing this metabolism will have the unit: 1/hr
- 3: (T) F The rate at which a lipophilic drug, of low molecular weight that is not an acid nor a base, is taken up by tissues will significantly be related to the blood flow through those tissues.
- 4: T F The rate at which a lipophilic drug that is not an acid nor a base is taken up by fat tissue is likely to be faster than the rate at which it is taken up by the kidney.
- 5: The same dose of a drug is given either as a solution or in form of a slow dissolving crystal suspension. The solution will have to be given more often during the day.
- 6: T F Plasma can be prepared by letting the collected patient's blood clot. The resulting supernatant is called plasma.

Name:	 	
UFID#: _	 	

Question Set II (20 points)

True (A) or False (B). On the bubble sheet mark A for true or B for false. Consider the lipophilic drug A and a drug B which is even more lipophilic. Both do not show any affinity to transporters (Ficks law applies), show the same tissue and plasma protein binding.

- 7: T (F) Drug B will enter the liver faster.
- 8: T (F) Drug A will be unable to enter the interstitial fluid.
- 9: (T) F Both drugs will have the same volume of distribution.
- 10: T F Drug B is more likely to show permeability limited tissue uptake.

Name:	 	
UFID#:		

Question Set III

(20 points)

11: Listed in the Table are two properties of acidic drug molecules:

- the fraction unionized at ph=7.4 and
- the partition coefficient of the unionized form.

DRUG	Fraction Unionized at pH=7.4	Partition Coefficient of Unionized form	Molecular Weight (Dalton)
1	0.5	2,1	240
2	0.91	0.07	290
3	0.074	10	320
4	0.72	0,005	456

Select the correct rank order with which drugs 1-4 will enter brain tissue. Assume that the drugs are not subject to transporters at the blood-brain barrier.

- A: 1 slower than 2 slower than 3 slower than 4
- B: 1 slower than 3 slower than 2 slower than 4
- C: 4 slower than 2 slower than 3 slower than 1
- D: 4 slower than 2 slower than 1 slower than 3
- E: 3 slower than 1 slower than 4 slower than 2

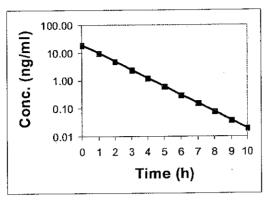
Name:	
UFID#:	 ,

Question Set IV (True or False)

(15 points)

True (A) or False (B). On the bubble sheet mark A for true or B for false. Assume no active transport.

Assume the same dose of penicillin G is given to patients as iv bolus injection (as solution in saline), intramuscular (i.m.) oily injection or orally.


- 12: T F Giving the drug orally will result in a much smaller AUC than after i.m. and iv injection.
- 13: T F Penicillin G is stable in the gastro-intestinal tract.
- 14: T (F) iv injections allow a less frequent dosing.

Name:

UFID#:

Question Set V (True or False)

(25 points)

22 20 18 16 14 12 3 10 0 1 2 3 4 5 6 7 8 9 10 Time (h)

Drug A

Drug B

True (A) or False (B). On the bubble sheet mark A for true or B for false

- 15: (T) F Drug A's rate of elimination is affected by the amount of drug in the body.
- 16: T (F) Drug B's elimination rate constant has the unit "ng/ml".
- 17: (T) F For Drug A, the fraction of drug eliminated per hour is constant.
- 18: T F Drug B's concentration-time profile might be explained by saturated metabolic enzymes.
- 19: The half-life of Drug B depends on the concentration that should be cut into half.

Name:	 	
UFID#:		

Question Set VI

(20 points)

20: 200 mg of Drug A was administered to a patient through iv bolus injection. A plasma drug concentration of 0.78 mg/L was measured after 2 hours. A plasma drug concentration of 0.16 mg/L was measured after 8 hours. The drug's distribution is instantaneous.

Assuming a first order process, calculate the elimination rate constant

- A: $0.16 \, h^{-1}$
- B: 0.16 mg/ (L*h)
- C: 0.264 mg/ (L*h)
- D: 0.264 h⁻¹
- E: None of the above
- 21: 200 mg of Drug A was administered to a patient through i.v bolus injection. A plasma drug concentration of 0.78 mg/L was measured after 2 hours. A plasma drug concentration of 0.16 mg/L was measured after 4 hours. The drug's distribution is instantaneous.

Assuming a zero order process, calculate the initial drug concentration

- A: 1.32 mg/L
- B: 1.32 L
- C: 1.4 mg/L
- D: None of the above

Name:	 	
UFID#:		

Question Set VII

(15 points)

A drug (lipophilic, unionized, low molecular weight) is showing in average a pronounced binding to plasma proteins of 99%. Between-subject variability of protein binding is pronounced. 1000mg of the drug is given as IV bolus injection to two patients. **Patient 1 has a much stronger plasma protein binding** for the drug (99.995%) than the second patient (99.99%). The tissue binding is the same in both patients and is equal to 90%.

Based on the given information please indicate whether **patient 1** will have a larger (\uparrow) , smaller (\downarrow) identical (\leftrightarrow) value than patient 2 for:

- total initial total plasma drug concentration (C₀),
- free initial total plasma drug concentration (free C₀),
- $\underline{\mathbf{f}}_{\mathbf{u}}$
- V_d

22:

A: $C_0 \uparrow$, free $C_0 \uparrow$, $f_u \downarrow$, $V_d \downarrow$

B: $C_0 \downarrow$, free $C_0 \leftrightarrow$, $f_u \downarrow$, $V_d \uparrow$

C: $C_0 \uparrow$, free $C_0 \downarrow$, $f_u \downarrow$, $V_d \downarrow$

D: $C_0 \uparrow$, free $C_0 \uparrow$, $f_u \uparrow$, $V_d \leftrightarrow$

E: none of above combinations.

Name:	
UFID#: _	

Question Set VIII

(20 points)

Assume a drug is substrate of a specific transport protein. What of the following statements are

True (A) or False (B). On the bubble sheet mark A for true or B for false

- 23: T (F) Transporters do not use energy.
- 24: T (F) Transporters only eliminate drugs from the body.
- 25: T (F) Transporters are only present in liver and kidney.
- 26: (T) F Transporters are saturable.
- 27: (T) F Transporters work often in conjunction with enzymes.

Name:	
UFID#:	

Question Set IX

(35 points)

- 28: T
- Free drug concentrations are assumed to be the same in plasma and tissues, when the distribution is assumed to be instantaneous.
- 29: T For a drug that shows permeability controlled uptake into all tissues, total drug concentrations are always higher in the plasma than in tissues.
- 30: T When the Vd of a drug is 41L; we can conclude that the drug has no plasma protein binding or tissue binding.
- 31: T (F) A fast absorption might allow less frequent dosing.
- 32: T A slower absorption might be advantageous for a drug with a narrow therapeutic window.
- 33: T Find The Fick's law is: dq/dt = D * K * (Cplasma Ctissue)/h. The k in the equation denotes the first order elimination rate constant.
- 34: T F Concentrations in plasma are of relevance for the drug therapy as they are generally identical to concentrations at the target site.

Name:	
IÆID#∙	

Useful Pharmacokinetic Equations

Symbols

D = dose

 τ = dosing interval

CL = clearance

Vd = volume of distribution

ke = elimination rate constant

k_a = absorption rate constant

F = fraction absorbed (bioavailability)

K₀ = infusion rate

T = duration of infusion

C = plasma concentration

General

Elimination rate constant

$$k_e = \frac{CL}{Vd} = \frac{\ln\left(\frac{C_1}{C_2}\right)}{(t_2 - t_1)} = \frac{\ln C_1 - \ln C_2}{(t_2 - t_1)}$$

Half-life

$$t_{1/2} = \frac{0.693 \cdot Vd}{CL} = \frac{ln(2)}{k_e} = \frac{0.693}{k_e}$$

Intravenous bolus

Initial concentration

$$C_0 = \frac{D}{Vd}$$

Plasma concentration (single dose)

$$C = C_0 \cdot e^{-k_e \cdot t}$$

Plasma concentration (multiple dose)

$$C = \frac{C_0 \cdot e^{-k_e \cdot t}}{\left(1 - e^{-k_e \cdot \tau}\right)}$$

Peak (multiple dose)

$$C_{\text{max}} = \frac{C_0}{\left(1 - e^{-k_e \cdot \tau}\right)}$$

Trough (multiple dose)

$$C_{min} = \frac{C_o \cdot e^{-k_o \cdot r}}{\left(1 - e^{-k_o \cdot r}\right)}$$

Average concentration (steady state)

$$\overline{C}p_{ss} = \frac{D}{CL \cdot \tau}$$

Oral administration

Plasma concentration (single dose)

$$C = \frac{F \cdot D \cdot k_a}{Vd(k_a - k_e)} \cdot \left(e^{-k_e t} - e^{-k_a t}\right)$$

Time of maximum concentration (single dose)

$$t_{max} = \frac{ln\left(\frac{k_a}{k_e}\right)}{\left(k_a - k_e\right)}$$

Plasma concentration (multiple dose)

$$C = \frac{F \cdot D \cdot k_a}{Vd(k_a - k_e)} \cdot \left(\frac{e^{-k_e \cdot t}}{\left(1 - e^{-k_e \cdot \tau}\right)} - \frac{e^{-k_e \cdot t}}{\left(1 - e^{-k_a \cdot \tau}\right)} \right)$$

Time of maximum concentration (multiple dose)

$$t_{max} = \frac{\ln\left(\frac{k_a \cdot \left(1 - e^{-k_a \cdot \tau}\right)}{k_c \cdot \left(1 - e^{-k_a \cdot \tau}\right)}\right)}{\left(k_a - k_c\right)}$$

Average concentration (steady state)

$$\overline{C} = \frac{\overline{F} \cdot D}{CL \cdot \tau}$$

Clearance

$$Cl = \frac{Dose \cdot F}{AUC}$$

$$Cl = k_s \cdot V_s$$

Name: _	 	
UFID#:		

Constant rate infusion

Plasma concentration (during infusion)

$$C = \frac{k_0}{CL} \cdot \left(1 - e^{-k_0 \cdot t}\right)$$

Plasma concentration (steady state)

$$C = \frac{k_0}{CL}$$

Calculated clearance (Chiou equation)

$$CL = \frac{2 \cdot k_0}{\left(C_1 + C_2\right)} + \frac{2 \cdot Vd \cdot \left(C_1 - C_2\right)}{\left(C_1 + C_2\right) \cdot \left(t_2 - t_1\right)}$$

Short-term infusion

Peak (single dose)

$$C_{\max(1)} = \frac{D}{CL \cdot T} \cdot \left(1 - e^{-k_e \cdot T}\right)$$

Trough (single dose)

$$C_{min(1)} = C_{max(1)} \cdot e^{-k_c(\tau - T)}$$

Peak (multiple dose)

$$C_{max} = \frac{D}{CL \cdot T} \cdot \frac{\left(1 - e^{-k_e \cdot T}\right)}{\left(1 - e^{-k_e \cdot T}\right)}$$

Trough (multiple dose)

$$C_{min} = C_{max} \cdot e^{-k_e(\tau - T)}$$

Calculated elimination rate constant

with C_{max}^* = measured peak and C_{min}^* = measured trough,

measured over the time interval Δt

Equations/Useful pharmacokinetic equ 5127

Calculated peak

$$C_{max} = \frac{C_{max}^*}{e^{-k_e \cdot t^*}}$$

with C_{max}^* = measured peak, measured at time t^* after the end of the infusion

Calculated trough

$$C_{\min} = C_{\min}^* \cdot e^{-k_b \cdot t^*}$$

with C_{min}^{*} = measured trough, measured at time t^{*} before the start of the next infusion

Calculated volume of distribution

$$Vd = \frac{D}{k_e \cdot T} \cdot \frac{\left(1 - e^{-k_e \cdot T}\right)}{\left[C_{\text{max}} - \left(C_{\text{min}} \cdot e^{-k_e \cdot T}\right)\right]}$$

Calculated recommended dosing interval

$$\tau = \frac{\ln\left(\frac{C_{\text{max(desired)}}}{C_{\text{min(desired)}}}\right) + T}{k}$$

Calculated recommended dose

$$D = C_{\text{max(desired)}} \cdot k_e \cdot V \cdot T \cdot \frac{\left(1 - e^{-k_e \cdot r}\right)}{\left(1 - e^{-k_e \cdot T}\right)}$$

Two-Compartment-Body Model

$$C = a \cdot e^{-at} + b \cdot e^{-\beta t}$$

$$AUC_{\infty} = a / \alpha + b / \beta$$

$$Vd_{area} > Vd_{ss} > Ve$$

Creatinine Clearance

$$CL_{creat}(male) = \frac{(140 - age) \cdot weight}{72 \cdot Cp_{creat}}$$

$$CL_{creat}(female) = \frac{(140 - age) \cdot weight}{85 \cdot Cp_{creat}}$$

With weight in kg, age in years, creatinine plasma conc. in mg/dl and CL_{creat} in ml/min

Name: UFID#:

Ke for aminoglycosides

 $K_e = 0.00293(CrCL) + 0.014$

Metabolic and Renal Clearance

$$\mathsf{E}_\mathsf{H} = \frac{\mathit{Cl}_{\mathsf{int}} \cdot \mathit{fu}_{\mathit{b}}}{\mathit{Q}_{\mathit{H}} + \mathit{Cl}_{\mathsf{int}} \cdot \mathit{fu}_{\mathit{b}}}$$

$$CI_H = E_H \cdot Q_H = \frac{Q_H \cdot CI_{int} \cdot fu_b}{Q_H + CI_{int} \cdot fu_b}$$

$$\mathsf{F}_{\mathsf{H}} = \frac{Q_{\scriptscriptstyle H}}{Q_{\scriptscriptstyle H} + Cl_{\scriptscriptstyle \mathsf{int}} \cdot fu_{\scriptscriptstyle b}}$$

$$CI_{ren} = RBF \cdot E = GFR \cdot \frac{C_{in} - C_{out}}{C_{in}}$$

$$Cl_{ren} = \frac{\text{rate of excretion}}{\text{plasma concentration}}$$

$$Cl_{ren} = fu \cdot GFR + \left[\frac{\text{Rate of secretion - Rate of reabsorption}}{\text{Plasma concentration}} \right]$$

Ideal Body Weight

Male

IBW = 50 kg + 2.3 kg for each inch over 5ft in height

Female

IBW = 45.5 kg + 2.3 kg for each inch over 5ft in height

Obese

ABW = IBW + 0.4*(TBW-IBW)

$\frac{\text{Volume of Distribution}}{V = V_{\mathbf{p}} + V_{\mathbf{T}} \cdot K_{\mathbf{p}}}$

$$V = V_{P} + V_{T} \cdot K_{P}$$

$$V = V_{T} + V_{T} \cdot \frac{fu}{f}$$

$V = V_P + V_T \cdot \frac{fu}{fu_T}$

Clearance

$$Cl = \frac{Dose}{AUC}$$

$$Cl = k_a \cdot V_d$$

Name: _	 	 	
UFID#:			

Constant rate infusion

Plasma concentration (during infusion)

$$C = \frac{k_0}{CL} \cdot \left(1 - e^{-k_c \cdot t}\right)$$

Plasma concentration (steady state)

$$C = \frac{k_0}{CL}$$

Calculated clearance (Chiou equation)

$$CL = \frac{2 \cdot k_0}{\left(C_1 + C_2\right)} + \frac{2 \cdot Vd \cdot \left(C_1 - C_2\right)}{\left(C_1 + C_2\right) \cdot \left(t_2 - t_1\right)}$$

Short-term infusion

Peak (single dose)

$$C_{\max(1)} = \frac{D}{CL \cdot T} \cdot \left(1 - e^{-k_{\phi} \cdot T}\right)$$

Trough (single dose)

$$C_{\min(1)} = C_{\max(1)} \cdot e^{-k_{\sigma}(\tau - T)}$$

Peak (multiple dose)

$$C_{max} = \frac{D}{CL \cdot T} \cdot \frac{\left(1 - e^{-k_e \cdot T}\right)}{\left(1 - e^{-k_e \cdot \tau}\right)}$$

Trough (multiple dose)

$$C_{min} = C_{max} \cdot e^{-k_{c} \cdot (\tau - T)}$$

Calculated elimination rate constant

$$k_{_{o}} = \frac{ln\!\!\left(\frac{C_{max}^{*}}{C_{min}^{*}}\right)}{\Delta t}$$

with Cmax = measured peak and Cmin = measured trough,

measured over the time interval Δt

Equations/Useful pharmacokinetic_equ_5127

Calculated peak

$$C_{max} = \frac{C_{max}^*}{e^{-k_e \cdot t^*}}$$

with C_{max} = measured peak, measured at time t after the end of the infusion

Calculated trough

$$C_{\text{min}} = C_{\text{min}}^* \cdot e^{-k_e \cdot t^*}$$

with C_{min}^* = measured trough, measured at time t^* before the start of the next infusion

Calculated volume of distribution

$$Vd = \frac{D}{k_e \cdot T} \cdot \frac{\left(1 - e^{-k_e \cdot T}\right)}{\left[C_{\text{max}} - \left(C_{\text{min}} \cdot e^{-k_e \cdot T}\right)\right]}$$

Calculated recommended dosing interval

$$\tau = \frac{ln\!\!\left(\frac{C_{\text{max(desired)}}}{C_{\text{min(desired)}}}\right)}{k_{\epsilon}} + T$$

Calculated recommended dose

$$D = C_{max(desired)} \cdot k_e \cdot V \cdot T \cdot \frac{\left(1 - e^{-k_e \cdot r}\right)}{\left(1 - e^{-k_e \cdot T}\right)}$$

Two-Compartment-Body Model

$$C = a \bullet e^{-at} + b \bullet e^{-\beta t}$$

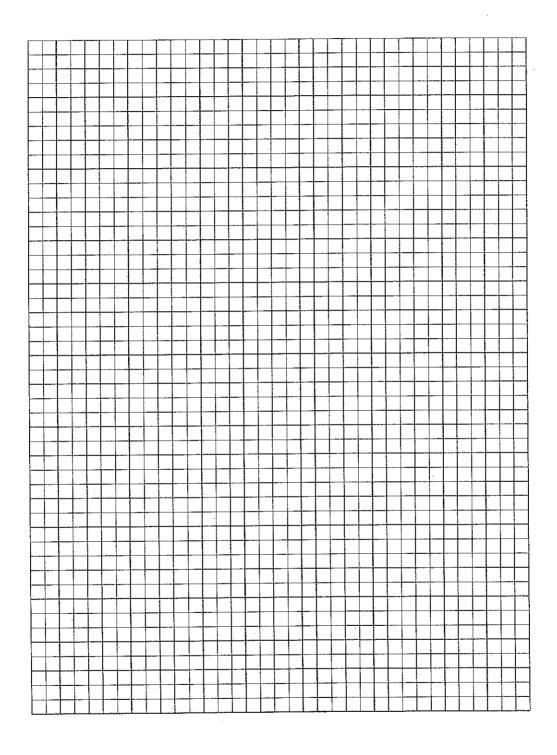
$$AUC_{\infty} = a/\alpha + b/\beta$$

$$Vd_{srea} > Vd_{ss} > Vc$$

Creatinine Clearance

$$CL_{creat}(male) = \frac{(140 - age) \cdot weight}{72 \cdot Cp_{creat}}$$

$$CL_{creat}$$
 (female) = $\frac{(140 - age) \cdot weight}{85 \cdot Cp_{creat}}$


With weight in kg, age in years, creatinine plasma conc. in mg/dl and CL_{creat} in ml/min

2

Name:	
UFID#:	

	┆╡┋╒┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋			
			▎ ▗▗▗▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ऽ ▗ ऽ	╌┾┼┼┼┼╂┼┼┼
▎ ▘				
		┇╏┋┋┋┋┋		
	┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆┆			
		┇┇┋┋		
	┆╡╘═╏╡┈┈╏┈╏╏┊┋┋╇┿┼╏┈			
		┇┇╎╬╘┪ ┇╬┼┼┼┼		
┣═╒┆╣╏┊ ┼╬╫┼╬				
		┇┇╻╻ ╏╃╂┆┧╂╃╬╬╬		
<u>┞╃┾╃╅┪┧┧┧┧┧┧┧┧╂╂┼╁╇┢╋┉╁┼</u> ╬	<u>╆┧╂╂╀┼┼╂┞</u> ╬			
╏┍┉┋┋┋┈┈┋┋┋┋	┇┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋	-1-11-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		
			┠ ╊╏┼┼┼┼┼┼┼┼┼┼	╶┊╏╏┊╎╏┉┆┿╧╏╏╏╏ ╏
<u>┞┾╶┼┧┾</u> ┇ ┥ ┝┾ <u>┼┼┧╏</u> ┼┼┇╂┼┇┼╏╏┼				
	┩┩┩┩┩	┥╏┊╏╏╏╏╏ ╃╃┩╂┞╏┞┞	╏╏╏╈╠┢ ┾╋╃╂┼┼╏┼┼	┈╏╏┈╏╏╏╏
┡╍┿┋┩╏┊┊┋╏┊╏╏╎╏╏┋ ╋ ╍╋┩┾╏╏	╂┨┧╂┋╎┇╏╟┠┡┿ ┿╂┼┼┼╁╂ ╞ ╋		╏╏╏╏╏	
			<u> </u>	<u>╶</u> ╏╏╏╏
	┇┆╎┇┇╎╏┇┋╬╬╏ ╀	┇┇┇╎╎╏╬╗╧╎╏╏╏╏╏╏╏╏	╎┼╏┋ ┤╂╏╏╏	┊╏╏╏╏╏╏╏╏
┇╒┊╏┊╏╏╏╏╏╏╎╎╏╏ ┩ ╟╒ ╇╬╇╬┼╃┼╀	┋╎╎┋╏╎┇┆┩╏ ╍╾╃┥ ╏╏╎╏┠┋┼ ┞┤	╂╏┦╎╎╎╏┈ ╍╌╂╏╂┤┼┼╂┼╂	╎╎╂╄┾┿╋┼╏╎┋╏╏╎ ┇	╎╏╏╎╏╏╏╏╏╏ ╬╬┼┼┩╋┼┾┼┦
┠ ┩╠╂┊╂╏╏╎╏╏╎╏╏╫╏╬╬┿╃ ┼┼╂	┊╎╎╎╏┊╏╎╏╏┿ ╅┩ ╂╏╏╏╂┼┼	┩╏╎╎┊┊┋┊┿ ╅╂ ┊┦┤╎╽ ╂┼╬	╎╎╏ ┼┼┼	╒╏┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋
┠╎┇┇┩ ┸╄╀╀┼┦╏┞┼╏╏╏┼┼┼ ╏ ╒┼┼┼┼	╶ ┾┼┼╏╏┼┼┇╏┾╬┇┿╂╂╏╏╏╏	╇╂┿╬┧┇╬╬┿╋┨┋ ┼┼┼┼┼┼	╎╎┠┝┝ ┼┼┼┼	
┠ ┷ ┩╏╎╏╏╎╏╏┩╇╇╇╇	╎╎╎╏╏╏┋ ┼┼┼	┦╏╎╏┠╂╃┩╏╏╏┢┿┊┼╏╂┿	╒ ╌╂┼┼┼┼┼┼┼┼┼┼┼	▗ ▍ ╏╏╏
		┆┋┊┩╃┩╏╏╏╏╇┿╅╏╏	╏╏╏╏╏╏╏╏	
┠ ┊╎╎╏╏╎┿┝╬┪┼╏╎╎ ┇┇╏╂┼╏┼ ┆╏ ╬	╊╂╫╏ ╎╏╎╏┼┼┼ ╏			
	<u> </u>	 		
	1-9-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			▎▗▎▕▕▕▕▕▕▕▕▕▕▕▕▕▐▀▘▀▀ ▋
▐▐▗▗▗ ▗ ▗ ▗▗ ▗ ▗▗▗▗▗▗▗▗▗▗▗▗▗				

Name:		
UFID#:		

