Menu UF Health Home Menu
 

News

Celebrating Distinction in Pharmacy

The UF Health Science Center honored 27 newly endowed professors during its fifth annual Celebrating Distinction Ceremony. Pictured from the College of Pharmacy are, l to r, Drs. Chenglong Li, Almut Winterstein and Chengguo "Chris" Xing.

The UF Health Science Center honored 27 newly endowed professors during its fifth annual Celebrating Distinction Ceremony. Pictured from the College of Pharmacy are, l to r, Drs. Chenglong Li, Almut Winterstein and Chengguo “Chris” Xing.

Three University of Florida College of Pharmacy researchers from the departments of medicinal chemistry and pharmaceutical outcomes and policy were installed as endowed professors during an Oct. 26 ceremony hosted by UF Health. Appointment to an endowed professorship is one of the highest honors a college can bestow on a faculty member and is reserved for scholars of national and international acclaim. Those College of Pharmacy faculty honored included:

  • Chenglong Li, Ph.D., professor of medicinal chemistry and the Nicholas Bodor Professor in Drug Discovery
  • Almut Winterstein, Ph.D., professor and chair of pharmaceutical outcomes and policy and the Dr. Robert and Barbara Crisafi Chair in Pharmaceutical Outcomes and Policy
  • Chengguo “Chris” Xing, Ph.D., professor of medicinal chemistry and the Frank A. Duckworth Eminent Scholar Chair in Drug Research and Development

“Endowed professorships and chairs are critical to our future,” said David S. Guzick, M.D., Ph.D., senior vice president for health affairs at UF and president of UF Health. “They create an enduring legacy that provides stability across generations in the academic pursuit of improving health care in our community and around the world.”

The honors were made possible thanks to the generosity of donors who chose to invest in College of Pharmacy faculty and their programs. Nicholas and Sheryl Bodor established the Nicholas Bodor Professorship in Drug Discovery in 2007, and the couple attended the Celebrating Distinction ceremony to welcome Chenglong Li into his new professorship position.

“We salute the generous donors who have made a commitment toward improving pharmaceutical education and research at UF through endowed professorships and chairs,” said Julie Johnson, Pharm.D., dean and distinguished professor in the UF College of Pharmacy. “These gifts help the College of Pharmacy recruit and retain accomplished scholars who share with their donors a vision for a better tomorrow.”

In addition to the three College of Pharmacy professors honored, UF Health recognized 24 recently endowed professors and chairs from UF’s other academic health colleges at the Celebration Distinction ceremony.

College of Pharmacy Honorees

Chenglong Li, Ph.D.
Nicholas Bodor Professor in Drug Discovery

Established in 2007 by Nicholas and Sheryl Bodor, this fund supports a professorship in drug discovery at the UF College of Pharmacy. Bodor joined UF in 1979 as professor and chair of the department of medicinal chemistry and was promoted to graduate research professor of the university in 1983. Bodor founded the Center for Drug Discovery in 1986 and supervised the training of 50 doctoral students and more than 100 postdoctoral-level research associates and fellows.

Medicinal chemist Chenglong Li, Ph.D., joined the UF College of Pharmacy in 2016 and serves as the graduate coordinator in the department of medicinal chemistry. With wide-ranging interests in chemistry, Li focuses his research on molecular recognition, with a strong application to structure-based, computer-aided drug design. He uses computational and experimental approaches to explore the connection among molecular structure, dynamics and function. Prior to joining UF, Li was a professor at The Ohio State University College of Pharmacy for 11 years. He also worked as a research associate in computational chemistry at The Scripps Research Institute in La Jolla, California. He received a doctoral degree in biophysics and a minor in organic chemistry from Cornell University in 2000 and earned his master’s and bachelor’s degrees from Beijing University in China.

 

Almut Winterstein, Ph.D.
Dr. Robert and Barbara Crisafi Chair in Pharmaceutical Outcomes and Policy

What kind and how much medication a patient receives can be a matter of life or death. That’s why Robert Crisafi, Ph.D., who received his doctoral degree in pharmacy from UF in 1956, spent a career focused on patient safety and the role pharmacists can play in reducing medical errors in hospitals. The Crisafi Chair in Pharmaceutical Outcomes and Policy was established with the goal to create systems that will prevent medication errors. The chair works in conjunction with UF Health to generate new studies and processes to further reduce drug errors at hospitals throughout the U.S.

Almut Winterstein, Ph.D., a professor and chair of the department of pharmaceutical outcomes and policy at the UF College of Pharmacy, is recognized as an international leader in drug safety and pharmacoepidemiology. She has focused her research on evaluating drug safety and effectiveness in real-world populations and on devising ways to improve medication use. Since joining the UF College of Pharmacy in 2000, Winterstein has collaborated with UF Health’s teaching hospitals on studies aimed at evaluating and improving patient safety and drug therapy outcomes. She has received funding from various federal agencies and serves as chair of the Food and Drug Administration’s Drug Safety and Risk Management Advisory Committee. In 2013, Winterstein was inducted as a fellow of the International Society of Pharmacoepidemiology. She graduated with her pharmacy degree from Friedrich Wilhelm University in Bonn, Germany, and received her doctoral degree in pharmacoepidemiology and social pharmacy from Charité, Humboldt University in Berlin.

 

Chengguo “Chris” Xing, Ph.D.
Frank A. Duckworth Eminent Scholar Chair in Drug Research and Development

Frank A. Duckworth established the first endowed eminent scholar chair in the UF College of Pharmacy in 1989. Duckworth received a degree in pharmacy in 1942 and a juris doctor in 1948, both from UF. He taught in the UF College of Pharmacy and was awarded the college’s first Distinguished Alumnus Award in 1986. He was also instrumental in providing the vision and inspiration for the creation of Oak Hammock at the University of Florida. Duckworth passed away in 2002.

Accomplished researcher Chengguo “Chris” Xing is a professor of medicinal chemistry at the UF College of Pharmacy. He joined the college following 13 years at the University of Minnesota. His research is funded by the National Institutes of Health and broadly covers the isolation, design and synthesis, and identification of biologically active small molecules to help manage diseases and understand biology. His research is focused on translational development with several indications, including novel therapies selective against multidrug resistant malignancies, chemopreventive agents against primary carcinogenesis, and a natural dietary supplement on neurological disorders, with the goal to extend them in the clinical setting. Xing received his doctoral degree from Arizona State University and completed postdoctoral training at Harvard University.

read more

UF College of Pharmacy welcomes five new faculty to campus

The University of Florida College of Pharmacy welcomed five new faculty to the college in July and August. Included in the group are UF Preeminence scholars, Chengguo (Chris) Xing, Ph.D., and Chenglong Li, Ph.D. The new faculty additions bring the total number of new faculty hires in the college to 28 since summer 2013.

Chengguo (Chris) Xing, Ph.D.

Chengguo Xing, Professor, Pharmacy/Medicinal ChemistryAccomplished researcher Chengguo (Chris) Xing, Ph.D., has been appointed a professor of medicinal chemistry and the Frank A. Duckworth Eminent Scholar Chair in Drug Research and Development at the University of Florida College of Pharmacy. Xing joined the college in August following 13 years at the University of Minnesota. His research is funded by the National Institutes of Health and broadly covers the isolation, design and synthesis and identification of biologically active small molecules to help manage diseases and understand biology. As the Frank A. Duckworth Eminent Scholar Chair, his research at UF will focus on translational development with several indications, including novel therapies selective against multi-drug resistant malignancies, chemopreventive agents against primary carcinogenesis, and a natural dietary supplement on neurological disorders with the goal to extend them in the clinical setting. Xing obtained his Ph.D. degree from Arizona State University and completed postdoctoral training at Harvard University.

Chenglong Li, Ph.D.

Chenglong LiMedicinal chemist Chenglong Li, Ph.D., joined the University of Florida College of Pharmacy in August as the Nicholas Bodor Professor in Drug Discovery. He will also serve as the graduate coordinator in the department of medicinal chemistry. With wide ranging interests in chemistry, Li focuses his research on molecular recognition, with a strong application to structure-based computer-aided drug design. He uses computational and experimental approaches to explore the connection among molecular structure, dynamics and function. Prior to joining UF, Li was a professor at The Ohio State University College of Pharmacy for 11 years. He also worked as a research associate in computational chemistry at The Scripps Research Institute in La Jolla, California. He graduated with a Ph.D. in biophysics and a minor in organic chemistry from Cornell University in 2000, and earned his masters and bachelor’s degrees from Beijing University in China.

Bethany Shoulders, Pharm.D.

Bethany ShouldersBethany Shoulders, Pharm.D., has joined the College of Pharmacy as a clinical assistant professor in the department of pharmacotherapy and translational research. She maintains a clinical practice site at the trauma ICU at UF Health Shands Hospital. A graduate of the University of Tennessee Health Science Center in 2014, she completed a pharmacy practice residency at The Johns Hopkins Hospital in Baltimore and a PGY2 critical care pharmacy practice residency with the University of Pittsburgh Medical Center. Her research endeavors during residency included evaluating intraoperative continuous infusion cefazolin in a cardiac surgery population and characterizing the guideline evidence behind off-label medication use in the intensive care unit.

Christopher Campbell, Pharm.D.

Christoper Campbell, Clinical Assistant Professor, Pharmacy, PTRThe University of Florida College of Pharmacy welcomed Christopher Campbell, Pharm.D., as a clinical assistant professor in the department of pharmacotherapy and translational research in August. He joined the college following completion of a PGY1 pharmacy residency and a PGY2 pediatric pharmacy residency at Georgia Regents Medical Center and the University of Georgia College of Pharmacy in Augusta, Ga. A native of Long Island, N.Y., he received his Doctor of Pharmacy degree from Northeastern University in 2014. Campbell will maintain a clinical practice site at UF Health Shands Hospital in the pediatric intensive care unit and the pediatric cardiac intensive care unit. A member of the American Society of Health-System Pharmacists and the Pediatric Pharmacy Advocacy Group, he has presented at state and national meetings and currently serves on the University HealthSystem Consortium Pediatric Pharmacy Committee. His research interests include pediatric critical care, anticoagulation and patient safety.

Michelle Zeigler, Pharm.D., Ph.D.

Michelle ZeiglerOne of the newest members of the College of Pharmacy faculty is a familiar face to the University of Florida Medication Therapy Management Communication and Care Center, or UF MTMCCC, in Lake Nona. Michelle Zeigler, Pharm.D., Ph.D., joined the department of pharmacotherapy and translational research as a clinical assistant professor in July. She previously served as a clinical pharmacist on the UF MTMCCC team since the campus opened in August 2012, and she will continue to work with UF MTMCCC in her new faculty role. Her clinical interests include health care communication, motivational interviewing and quality measures. Zeigler is a 2011 graduate of the UF College of Pharmacy. She completed a PGY-1 pharmacy residency at the Sarasota VA Community-Based Outpatient Clinic with a focus on ambulatory care in areas such as anticoagulation, diabetes, hypertension and hyperlipidemia. As a clinical pharmacist at UF MTMCCC, she worked on various prescriber outreach projects in addition to completing comprehensive medication reviews and providing adherence services. She also precepts third- and fourth-year pharmacy students. Prior to her pharmacy career, she earned a Ph.D. in plant molecular and cellular biology at UF.

 

read more

Fine-tuning chemistry to destroy bacterial biofilms

Medicinal chemists at the University of Florida recently discovered a series of organic compounds that can kill dangerous bacterial biofilms. Pictured l to r, Yasmeen Abouelhassan, Akash Basak, Dr. Rob Huigens and Chip Norwood

Medicinal chemists at the University of Florida recently discovered a series of organic compounds that can kill dangerous bacterial biofilms. Pictured l to r, Yasmeen Abouelhassan, Akash Basak, Dr. Rob Huigens and Chip Norwood

Just as a piano tuner adjusts the tension of the strings for optimal sound, medicinal chemists at the University of Florida College of Pharmacy are fine-tuning the structural positions of chemical compounds to find the most promising drug options for killing dangerous bacterial biofilms.

An estimated 17 million Americans are affected by biofilm-associated bacterial infections annually. The biofilm-growing cells are largely resistant to conventional antibiotic treatments and can linger for months or even years.

UF scientists recently discovered that a series of organic compounds called halogenated quinolines, or HQs, can kill dangerous bacterial biofilms present in recurring and chronic bacterial infections such as methicillin-resistant Staphylococcus aureus, or MRSA. In addition, researchers identified a way for chemists to better control the structural elements of HQ compounds which improves the likelihood of developing them into biofilm-attacking drug molecules.

“When you can control the biological activity and properties of a molecule, you have greater potential of developing a drug,” said Rob Huigens, Ph.D., an assistant professor of medicinal chemistry and lead investigator of a study about HQ compounds published in Chemistry – A European Journal. “Our goal is to develop HQ small molecules, so that they can help patients affected by biofilm-associated bacterial infections.”

Chemists synthesize structural representations of molecular frameworks as models to study different chemical groups at different positions in a compound. The representations include a core group of atoms and numbered positions that can be manipulated to develop and test new compounds. Huigens’ team discovered that small changes at a location called the 2-position on the quinoline structure can dramatically impact the potency and ability of HQ compounds to destroy bacterial biofilms.

“We do not yet know why the 2-position of the HQ scaffold is so important, but it is clear that it dramatically influences antibacterial activities,” Huigens said. “In this study, we wanted to develop compounds that have a high degree of structural diversity at the 2-position and evaluate their biofilm-eradication activities.”

UF researchers chemically synthesized 39 HQ compounds with different chemical groups and properties at the 2-position. The compounds were tested in multiple rounds of synthesis and biologically evaluated to determine and better develop their biofilm-eradication potential. The results yielded at least two molecules that were highly potent and warrant more testing.

Equally as important as the discovery of new potent compounds is the newfound control that chemists now have in manipulating future HQ development.

“The advance here is that we can do more in terms of developing HQ compounds through the tweaking of the 2-position,” Huigens said. “This study gives us more information concerning HQs and gives us greater flexibility for future developments.”

Now that researchers know how to structurally position atoms to develop highly potent HQ compounds, the next step is to use the information and incorporate critical aspects for drug properties, such as water solubility. Many organic chemicals are not highly water-soluble, so chemists must walk a fine line in improving water solubility while maintaining drug activity. An effective drug molecule will circulate in the body and distribute everywhere bacterial infections are located, a property that will be examined in a future study of these HQ compounds.

As researchers continue to fine-tune the chemistry involved in developing biofilm-eradicating drugs, each new discovery becomes the starting point for testing more advanced compounds, with the goal of one day eliminating biofilm-associated infections.

read more

From Peptides to Preeminence

read more

Researchers identify new strategy for discovering colorectal cancer drugs

Hendrik Luesch, Ph.D., the Debbie and Sylvia DeSantis Chair in Natural Products Drug Discovery and Development and professor and chair of medicinal chemistry

Hendrik Luesch, Ph.D., the Debbie and Sylvia DeSantis Chair in Natural Products Drug Discovery and Development and professor and chair of medicinal chemistry

University of Florida pharmacy researchers have identified novel drug targets and a new screening method for drugs affecting the signaling pathways in colorectal cancer.

Colorectal cancer is the fourth most common cancer in the United States. Every year, about 140,000 Americans are diagnosed and more than 50,000 people die from the disease. In 2000, President Bill Clinton officially designated March as National Colorectal Cancer Awareness month to draw attention to the deadly disease.

Hendrik Luesch, Ph.D., a professor and chair of the department of medicinal chemistry and the Debbie and Sylvia DeSantis Chair in Natural Products Drug Discovery and Development, and Long H. Dang, M.D., Ph.D., an associate professor of medicine, have devised a strategy whereby multiple cancer pathways may be targeted simultaneously for drug discovery. Many of the proteins currently under investigation as possible targets for cancer therapy are found in these pathways. Their results appear in a study published in the American Chemical Society’s Chemical Biology journal.

“Cancer is characterized by simultaneous changes of multiple signaling pathways due to accumulations of mutations in key genes during cancer development,” Luesch said. “Traditionally, researchers have targeted one particular pathway that is activated in a certain type of cancer — but in the later stages of the discovery process, the drugs tested have proven ineffective.”

A signaling pathway is a group of molecules that activate each other when they need to pass along a message. In normal cells, a signaling pathway controls healthy cell growth and division, but in cancer cells, genetic mutations cause defects in the pathways. Scientists are trying to interrupt these problematic pathways in order to develop drugs to combat cancer.

“We wanted to identify key players common in multiple pathways to pinpoint more relevant cellular components considered as targets for drug discovery,” Luesch said. “Our multiplex screen has potential to target multiple pathways at once. If you do a relatively smart screen early on, you can focus on the more promising drug candidates, and that could translate into a shorter discovery and development timeline.”

Long Dang, M.D., Ph.D., an associate professor in the division of hematology and oncology

Long Dang, M.D., Ph.D., an associate professor in the division of hematology and oncology

The research may be applied to other cancer therapies in the future, including colorectal, pancreatic, thyroid and lung cancers.

“We could adapt this type of strategy for any cancer causing mutation, as it is a screening platform that could be extended to any gene that is a problem,” Luesch said.

Using colorectal cell lines developed by Dang, UF Health researchers studied the relationship between two crucial signaling pathways involving KRAS genes and HIF transcription factors. Mutations of the KRAS genes are present in one-third to one-half of all colorectal cancers. HIF transcription factors are proteins often linked to cancer growth. Dang generated novel colorectal cell lines called knockout cells that were depleted of either mutated KRAS or HIF proteins. Luesch screened the knockout cells against parent cells that contained mutated KRAS and HIF proteins to identify drug targets that inhibited both signaling pathways. Almost 8,000 genes in the human genome were screened to identify novel drug targets in the pathways. Scientists then exposed the cells to more than 4,700 commercially available chemical compounds and identified 55 compounds that affect cancer cell growth in both the KRAS and HIF pathways.

Next, Luesch’s team screened a subset of marine natural product compounds from a library housed at the UF Center for Natural Products, Drug Discovery and Development. These compounds were previously isolated in his lab from cyanobacteria, a rich source of bioactive molecules found in marine environments. UF scientists found two of the library’s compounds, dolastatin 10 and largazole, to be novel inhibitors of the KRAS and HIF pathways. Dolastatin 10 is a close relative of a new medicine used for the treatment of Hodgkin’s lymphoma and anaplastic large cell lymphoma, a rare type of non-Hodgkin’s lymphoma. Luesch’s lab team identified the compound in the Pacific and Atlantic oceans. Largazole was discovered in cyanobacteria collected by Luesch’s team off the coast of the Florida Keys, and it has shown characteristics of being highly effective at reprogramming cancer cells and inhibiting cancer growth.

“We have some impressive data that shows largazole decreases colorectal cancer growth in rodent models and novel cellular data that shows it prevents the development of new blood vessels,” Luesch said. “In the present study, we found that largazole inhibits HIF-induced blood vessel development in zebrafish, indicating that our cellular screens have predictive power to identify effective HIF inhibitors.”

Luesch sees this research as a starting point to screen for personalized therapies. The college’s Center for Pharmacogenomics studies how genes affect the way the body responds to medicines and identifies optimal drug therapies based upon genotype.

“We are applying a similar concept as a step toward personalized medicine by taking mutations into account during the discovery process,” Luesch said. “The more immediate benefit for colorectal cancer patients is that we have now identified compounds that could be potentially used in combination therapy to treat colorectal cancer.”

read more

Dr. Yousong Ding receives grant from Air Force’s Young Investigator Research Program

Yousong DingYousong Ding, Ph.D., an assistant professor of medicinal chemistry, was one of 56 scientists and engineers selected to receive a grant award from the Air Force Office of Scientific Research, or AFOSR. The three-year award amounts to $360,000 and will allow Ding to develop an unprecedented cell-based strategy for the manufacturing of nitroaromatics, an important family of industrial chemicals that have a broad range of public and military uses. Industrial nitration is notorious for its heavily polluting processes, and Ding’s research will have the potential to revolutionize the nitration chemical industry by facilitating earth-benign production of nitroaromatics.

AFOSR awarded approximately $20.6 million in grants to researchers at 41 institutions and small businesses who submitted winning research proposals through the Air Force’s Young Investigator Research Program. The competition is open to scientists and engineers at research institutions across the United States who received a Ph.D. or equivalent degree in the last five years and show exceptional ability and promise for conducting basic research.

read more

Researchers find novel compounds kill biofilms, may eliminate persistent bacterial infections

Biofilms Slider

College of Pharmacy researchers have developed potent new compounds with aquatic origins that may offer relief for the 17 million American affected by biofilm-associated bacterial infections annually.

 

read more

Dr. Aldrich selected to serve on Center for Scientific Review’s Drug Discovery for the Nervous System Study Section

Jane Aldrich, professor, medicinal chemistry

Jane Aldrich, professor, medicinal chemistry

Jane Aldrich, Ph.D., a professor of medicinal chemistry, has accepted an invitation to serve on the Drug Discovery for the Nervous System Study Section of the Center for Scientific Review. Members are selected based upon their demonstrated competence and achievement in their scientific discipline. In the role, Aldrich will review grant applications submitted to the National Institutes of Health, make recommendations on these applications to the appropriate NIH advisory council or board, and survey the status of research in her field of science.

read more

UF Pharmacy Researcher in Medicinal Chemistry named UFF Preeminence Term Professor

UF_Hendrik Luesch_0066RCarson_20131112cropHendrik Luesch, Ph.D., the Debbie and Sylvia DeSantis Chair in Natural Products Drug Discovery and Development in the UF College of Pharmacy, was one of two faculty named as the UF Foundation 2014 Preeminence Term Professors.

Now in its second year, the University of Florida Foundation’s Preeminence Term Professorship program supports UF’s Preeminence goals. Each fall, the Foundation awards two $25,000 term professorships to faculty members with substantial research programs and outstanding records of accomplishment. Term professorships reflect UF’s commitment to invest in faculty members whose work is transforming lives. The awards enable recipients to extend their work through additional funding. Faculty members who receive the Preeminence Term Professorships are chosen from UF’s top faculty members, nominated by their deans.

Director of the Center for Natural Products, Drug Discovery and Development (CNPD3), Luesch’s research focus is on unique marine natural products to fully exploit the biosynthetic and therapeutic potential of untapped biodiversity for drug discovery. His multidisciplinary research program, at the interface of chemistry and biology, combines classical natural products chemistry with high-throughput screening, chemical genomics and medicinal chemistry to identify, characterize and optimize novel drug candidates for various diseases, especially cancer.

read more

See What Florida Teachers are Saying about Science at UF Health in NIH Common Fund Creative Video Competition

read more

UF Health researchers’ holistic approach to patient care selected as Editors Choice

UF Health researchers’ holistic approach to patient care selected as Editors Choice

Although some health care providers may overlook alternative therapies when treating functional bowel disorders such as irritable bowel syndrome, University of Florida faculty members have found evidence that hypnosis and cognitive behavioral therapy may benefit patients suffering from these diseases.

Led by researchers Oliver Grundmann of the UF College of Pharmacy and Saunjoo “Sunny” Yoon of the UF College of Nursing, the study was published in the European Journal of Integrative Medicine, which highlighted it as the “Editor’s Choice” in its August issue.

Oliver Grundmann, Ph.D.

Oliver Grundmann, Ph.D.

“Our work being highlighted in this way indicates that we are able to raise awareness for the issue of a more integrative and holistic approach to medical care in the area of functional bowel disorders in the scientific community — a goal that both Dr. Yoon and I have been striving for in our professional endeavors for many years,” said Grundmann, a clinical assistant professor in the College of Pharmacy.

The researchers reviewed 19 recent clinical trials to examine the potential benefits of using four common mind-body therapies — yoga, hypnotherapy, cognitive behavioral therapy and biofeedback — in the treatment of functional bowel disorders. In particular, the researchers found indications there were some benefits to hypnotherapy and cognitive behavioral therapy.

“It is still very hard to replicate some of the studies or generalize the findings,” said Yoon, an associate professor in the College of Nursing, adding there is a need for more studies. “Some of the research methodologies are not consistent from one study to another and some of the studies have a small sample size or the designs do not provide the rigor or obvious protocol.”

Functional bowel disorders occur when the stomach and bowels aren’t working properly and are typically accompanied by stomach pain, bloating and other intestinal symptoms. Treatments typically target these symptoms.

For about five years, Yoon and Grundmann have been studying and publishing material on complementary and alternative medicine, which includes treatments with dietary supplements, acupuncture and yoga.

Because functional bowel disorders are chronic conditions that come and go over time, patients sometimes develop negative attitudes that can affect treatments. Cognitive behavioral therapy is used in an attempt to help patients feel more positive. In one study the researchers examined, cognitive behavioral therapy worked as well as antidepressant medications.

Hypnosis, on the other hand, is used in an attempt to reduce pain. Some of the studies the researchers reviewed showed that hypnotherapy worked as well as medication to reduce pain in patients.

But although the results were promising, they were not conclusive, Yoon said.

“A lot of times we get contradictory results from the clinical trials, so it can be confusing for the readers or the clinicians when they read it,” Yoon said. “Our article can give them a better picture or better view about currently available clinical trials and the results of the trials.”

Yoon said doctors should not exclude complementary therapies when treating functional bowel disorders.

“We just need to have an open mind to the therapies that are not familiar in Western countries,” Yoon said.

read more

A Florida coastal seaweed could help fend off cancers and inflammatory diseases

A new defense against prostate cancer, the most common cancer in men in the United States, may come from a seaweed found off the coast of Florida.

University of Florida pharmacy researchers have screened various seaweeds with cancer-preventive potential and identified one that shows particular promise. They isolated specific compounds in this common green alga, known as sea lettuce, and undertook studies to understand exactly how they work. Their findings, published Sept. 4, in Cancer Prevention Research, show how the species may protect multiple organs from disease and may be particularly effective in preventing prostate cancer. View UF Health News Video.

Hendrik Luesch, Ph.D.

Hendrik Luesch, Ph.D.

Sea lettuce is commonly consumed in Asian countries where the risk of prostate cancer is low, but there have been no rigorous studies to verify the correlation, said Hendrik Luesch, Ph.D., an associate professor of medicinal chemistry in the UF College of Pharmacy, a part of UF Health. Luesch’s marine natural products laboratory offers the first investigation of this seaweed’s cellular functions, revealing specific mechanisms that contribute to its anti-inflammatory and antitumor properties and identifying its active chemical ingredients.

“We now have scientific evidence that this seaweed raises the body’s antioxidant defense system and therefore might potentially prevent a number of diseases, including cancer,” said Luesch. “This mechanism appears to be most relevant to prostate cancer.”

Scientists have long believed that seaweeds, a staple of Asian diets, may lower cancer risk in Western populations. When Luesch investigated at the molecular level, he identified key factors that support the hypothesis, including which seaweeds might provide the most protection.

Close to 240,000 men will be diagnosed with prostate cancer in the United States this year, leading all cancers in the number of new cases, according to a 2013 report from the American Cancer Society. The report shows prostate cancer to be the second leading cause of death after lung cancer for men and ranks Florida second only to California in its estimation of new cases and of deaths this year.

Molecules known as free radicals are a byproduct of exposure to environmental toxins and even occur during digestion. They damage cells, causing oxidation and inflammation that lead to a number of chronic health conditions such as heart disease, cancer and arthritis, Luesch said.

Antioxidant-rich fruits and vegetables protect the body against these free radicals, mostly through a scavenging process of elimination. Rather than simply removing the damaging free radicals through this direct reaction, compounds in sea lettuce worked through an indirect mechanism, Luesch found. This process increases the levels of a suite of antioxidant enzymes and boosts antioxidants in cells, producing longer-lasting protection. Regulated by stretches of DNA called antioxidant response elements, the enzymes prevent oxidative damage and inflammation.

Luesch points to sulforaphane, a chemical in broccoli, as an example of a cancer-preventive natural product that has been shown to work through this kind of regulation. His paper describes how increased expression of these enzymes correlates with an increased antioxidant status of the cell and anti-inflammatory activity.

With research funding, further studies can pinpoint potency, dosage and effectiveness, Luesch said. The antioxidant enzyme activities in sea lettuce make it ideal for development as a preventive natural supplement. He sees potential for making a big difference, not only for men’s health, but also to prevent an array of inflammatory diseases that challenge everyone’s health.

Luesch is also an affiliate member of the UF Health Cancer Center, the Evelyn F. & William L. McKnight Brain Institute and the Center for Translational Research in Neurodegenerative Disease at the University of Florida.

read more

University of Florida chosen to lead national distance education consortium

The American Distance Education Consortium has appointed Ian Tebbett, Ph.D., director of the University of Florida online forensic science master’s program, as its new president and CEO.

Tebbett, whose leadership appointment began July 1, has served on ADEC’s board of directors since 2009.

“I am honored to take on this new role with ADEC,” Tebbett said. “I hope to continue the outstanding work of its founder, Jan Poley, by expanding the reach and collaboration of ADEC members nationally and internationally. We will be the same higher education consortium for distance learning with bigger goals and louder voices.”

The UF forensic program won ADEC’s Award for Excellence in Distance Education in 2006. Four years later, Tebbett was recognized by the U.S. Distance Learning Association for his outstanding leadership in the advancement of distance learning through online technology. In 2011, he received the Irving Award, ADEC’s highest honor for innovators within distance education.

The consortium of U.S. state universities and land-grant colleges seeking to provide high-quality, economical distance education programs was established in 1994 by Poley, a professor emeritus at the University of Nebraska-Lincoln.

“After 20 years at the helm, stepping away from this pioneering organization is bittersweet,” Poley said. “ADEC has catalyzed significant change throughout the state and land-grant university system in distance education and online learning. With Ian Tebbett’s leadership and the collaboration of an outstanding board of directors, I have every confidence that the consortium will grow and prosper in the years ahead.”

A professor of toxicology, Tebbett established the first online Master of Pharmaceutical Science program at the UF College of Pharmacy in 2000. The program was developed for forensic lab scientists seeking advanced education and scientific knowledge for career advancement. The online forensic science master’s program, which has expanded its international collaborative partnerships, has graduated more than 1,000 students from 33 countries and offers five areas of specialization.

Because of the success and demand for the forensic science programs he established in the college, 15 more online graduate and professional programs in a variety of pharmacy fields have since been developed at UF.

Tebbett is also the director of the UF pharmaceutical chemistry program and a professor of veterinary medicine in the UF College of Veterinary Medicine. He has previously held faculty positions at the University of Strathclyde in Scotland and the University of Illinois at Chicago. Throughout his academic career, Tebbett has worked as a consultant for many international law enforcement agencies, and his research has been widely recognized within the field of forensic science.

read more

UF Offers Specialized Pharm.D. Summer Elective Courses Online

The University of Florida College of Pharmacy is offering relevant pharmacy electives to student pharmacists at any institution who want to get ahead this summer. Accepted by many top pharmacy schools nationally, UF has six Pharm.D. electives for students to choose from. Taught entirely online, these UF College of Pharmacy electives provide students an opportunity to work ahead and to gain knowledge in an area they may wish to learn more about. To learn more about the curriculum or admission requirements, click here.

Courses Offered Summer Term:

  • Pharmaceutical Regulatory Compliance
  • Managed Care Pharmacy
  • Psychological Approach to Medication Safety in Pharmacy
  • Introduction to Clinical Toxicology
  • Clinical Toxicology 1
  • Herbal and Dietary Supplements

 

read more

Charter Fellow, National Academy of Inventors

A distinguished professor emeritus of medicinal chemistry at the University of Florida College of Pharmacy has been named a Charter Fellow of the National Academy of Inventors. Raymond J. Bergeron, Ph.D., who was a Duckworth eminent scholar of drug development, was recognized in February along with four of his colleagues from UF.

Nominated for his outstanding contributions in patents and licensing, innovative discovery and technology, Bergeron was among 101 innovators from 56 research universities and nonprofit research institutes. U.S. Commissioner for Patents Margaret Focarino, from the United States Patent and Trademark Office (USPTO), led the induction of the charter fellows at the second annual meeting of the National Academy of Inventors, held at the University of South Florida in Tampa.

Bergeron, who holds 200 patents, has published 200 papers, authored a text on bioorganic chemistry, and edited two books on iron overload diseases. His research interests include cancer chemotherapy, the role of metals in diseases and metal chelators. Bergeron has dedicated his career to drug discovery and development surrounding cancer and iron overload diseases affecting children, namely thalassemia and sickle cell disease.

“I would encourage young biomedical researchers to think beyond publishing and grantsmanship. These are expected pursuits in academics,” Bergeron said. “Think about bringing your discoveries forward to patients. It’s all about making the world a better place.”

As a researcher in the department of medicinal chemistry for more than 30 years, Bergeron established his expertise in cellular function and iron metabolism, leading to the development of anticancer drugs and treatments for children with iron overload disease. He has taken five drugs to clinical trials, including one that shows a promising treatment for children with iron overload. He also has discovered a new therapeutic for pancreatic cancer, for which there is virtually no effective cure. It is anticipated that human trials will be launched within a year and a half.

The UF Office of Technology and Licensing has worked with Bergeron for more than 25 years to patent and license his discoveries.

“As one of the most prolific inventors at the University of Florida, Dr. Bergeron understands, not only the needs of the patients, but also what industry is looking for,” said Office of Technology and Licensing director David Day. “He works closely with the OTL to help ensure that his discoveries are protected and transferred to industry so that new therapies are brought to the patients.”

As a group, the new fellows hold more than 3,200 U.S. patents. The charter class included eight Nobel Laureates, two fellows of the Royal Society, 12 presidents of research universities and nonprofit research institutes, 50 members of the National Academies (National Academy of Sciences, National Academy of Engineering and the Institute of Medicine), 11 inductees of the National Inventors Hall of Fame, three recipients of the National Medal of Technology and Innovation, four recipients of the National Medal of Science, and 29 American Association for the Advancement of Science fellows, among other major awards and distinctions.

A plaque naming the new fellows and their institutions will be on display at the USPTO federal building in Alexandria, Va.

read more

Marine compound shows promise of improved drug treatment for COPD patients

Pharmacy researchers at the University of Florida have isolated a new marine compound they believe may lead to improved drug therapies for pulmonary diseases by inhibiting their progression rather than managing their symptoms.

Luesch

Hendrik Luesch, Ph.D.

Known as symplostatin 5, the compound was extracted from blue-green algae collected in Cetti Bay, Guam, by Hendrik Luesch, Ph.D., the Frank A. Duckworth eminent scholar chair in drug research and development. The new compound targets an enzyme overactive in chronic obstructive pulmonary disease, asthma, acute respiratory distress syndrome, cystic fibrosis and other diseases.

“These compounds can potentially offer a new opportunity to treat COPD and related diseases in a different way and possibly more effectively,” Luesch said.

COPD is the fourth leading cause of death in the United States, killing more than 120,000 Americans each year, according to the Centers for Disease Control and Prevention. Current therapies alleviate symptoms of COPD, but do not slow disease progression. Only one drug, Sivelestat, targets the enzyme, called elastase, but its marginal effects are delaying further clinical approvals, Luesch said.

Elastase is an enzyme that breaks down a variety of proteins. In COPD, where there is excessive enzyme activity, this contributes in part to lung damage and inflammation. The effects of elastase on these processes contribute to the irreversible destruction of lung tissues typically observed in COPD patients.

Lilibeth_Salvador

Lilibeth Salvador

Lilibeth Salvador, a researcher in Luesch’s Marine Natural Products lab, led the investigation published Feb. 14 in the Journal of Medicinal Chemistry. The study revealed that the blue-green algae prevented elastase-driven changes in bronchial connective tissue cells. She is also presenting the findings at the college’s 26th Annual Research Showcase on Thursday.

Salvador, who will earn her doctorate from the UF College of Pharmacy in May, uses a soccer analogy to describe how the compound may prove to be a more effective drug therapy.

“By inhibiting this enzyme, we prevent one of the key players in the initiation of COPD. So, we prevent the ball from being relayed on to other players involved in the progression of the disease,” she said.

Blue-green algae investigated by the Luesch lab contain naturally occurring molecules essential for survival in a harsh marine environment. These ingredients are what Luesch believes will lead to a new source of drugs that he hopes to develop for improved treatments for patients suffering from COPD and a host of other diseases.

From his marine samples collected in the Atlantic side of the Florida Keys to as far away as Guam in the Pacific, Luesch has discovered dozens of new promising compounds. His lab has already chemically synthesized several of these natural products and designed and generated similar compounds with improved drug-like properties. Further research funding enables him to continue the drug development process. His early studies show these marine compounds have the right stuff to begin further clinical studies for drugs to treat colorectal, prostate and metastatic breast cancer, enhance bone regeneration and slow the progression of Alzheimer’s disease.

Go to UF & Shands Newsroom article

read more

UF medicinal chemists modify sea bacteria byproduct for use as potential cancer drug

University of Florida pharmacy researchers have modified a toxic chemical produced by tiny marine microbes and successfully deployed it against laboratory models of colon cancer.

Writing today in ACS Medicinal Chemistry Letters, UF medicinal chemists describe how they took a generally lethal byproduct of marine cyanobacteria and made it more specifically toxic — to cancer cells.

When the scientists gave low doses of the compound to mice with a form of colon cancer, they found that it inhibited tumor growth without the overall poisonous effect of the natural product. Even at relatively high doses, the agent was effective and safe.

read more

New findings on UF marine compound shows versatility, from anti-tumor agent to bone regeneration

A promising medicinal compound discovered in a marine organism by University of Florida pharmacy researchers is showing its versatility against multiple diseases.

Having already demonstrated its power as an anti-tumor agent, largazole, produced by a cyanobacterium inhabiting coral reefs, has shown a new potential benefit for treating serious fractures, osteoporosis and other bone diseases, according to a study reported this week in the journal ACS Medicinal Chemistry Letters online.

read more

Antibacterial agent could cause pregnancy problems

A chemical found in everything from antibacterial soaps and lotions to socks may disrupt an enzyme that plays an important role in pregnancy, University of Florida researchers say.

Thought to be harmless, triclosan gives many soaps and lotions their antibacterial oomph and is found in hundreds of popular products. But a team of UF researchers led by Margaret O. James, Ph.D., has discovered that the chemical hinders an enzyme linked to the metabolism of estrogen. The researchers’ findings are reported in the November print issue of the journal Environment International.

In pregnancy, this enzyme, called estrogen sulfotransferase, helps metabolize estrogen and move it through the placenta into the developing fetus. There, the estrogen plays a crucial role in brain development and the regulation of genes.

“We suspect that makes this substance dangerous in pregnancy if enough of the triclosan gets through to the placenta to affect the enzyme,” said James, a professor and chairwoman of medicinal chemistry in the UF College of Pharmacy. “We know for sure it is a very potent inhibitor. What we don’t know is the kinds of levels you would have to be exposed to to see a negative effect.

“We know it is a problem, but we don’t know how much of a problem. We need to move forward and do additional studies.”

In pregnancy, the placenta basically serves as a developing baby’s in-womb survival kit. Almost everything the fetus gets from its mother — namely food and oxygen — comes through the placenta. It also creates important hormones, such as progesterone and estrogen.

Aside from the role it plays in the fetus, estrogen also affects how much oxygen the baby gets from the mother, said Charles Wood, Ph.D., a professor and chairman of physiology and functional genomics in the UF College of Medicine and a co-author of the study. All of the oxygen a baby gets from its mother flows through the mother’s uterine artery. Without enough estrogen, this artery can constrict, decreasing blood flow.

“If you don’t make enough estrogen you can, we think, starve the baby of enough oxygen,” Wood said.

Estrogen is also involved in signaling the uterus to contract during labor. But maintaining the right levels of the hormone during pregnancy is a delicate balance, Wood says. Too much estrogen could send the mother’s body into premature labor. Too little could hinder the flow of oxygen. Both instances could affect how the baby’s brain develops.

This is one of the reasons scientists are concerned about the pregnancy-related effects of chemicals such as triclosan.

“Some of these (chemicals) can go and combine with estrogen receptors and mimic estrogen or keep estrogen off its receptors or change the metabolism of estrogen, which is what we are looking at with triclosan,” Wood said.

In April 2010, the Food and Drug Administration decided to take a closer look at triclosan after several studies found links to problems with hormone regulation and other possible negative health effects. Other studies have shown that the chemical, which cannot be broken down by bacteria, stays in the environment long after it is used.

“Triclosan is a material that is present in the environment and everyone has low levels. If you use products with triclosan, you will likely have higher levels,” said Bruce Hammock, Ph.D., a professor of entomology at the University of California-Davis who studies triclosan. “It has some real benefits but it is certainly not risk-free.”

More studies are needed before researchers can conclude what effects triclosan really has on human health, James said.

“The triclosan is incorporated into household products because it inhibits bacterial growth,” James said. “But the bad thing is it has this unexpected side effect of inhibiting this important enzyme in the body. At this point we don’t know if the levels people are exposed to are high enough to cause an adverse effect.”

read more

Compound discovered in Florida Keys shows early promise as colon cancer treatment

A chemical compound made from a type of bacteria discovered in the Florida Keys by a University of Florida pharmacy researcher has shown effectiveness in fighting colon cancer in preclinical experiments.

Writing online in the Journal of Pharmacology and Experimental Therapeutics, scientists say the compound — known as largazole because it was first found near Key Largo — inhibits human cancer cell growth in cultures and rodent models by attacking a class of enzymes involved in the packaging and structure of DNA.

More study is needed, but scientists hope that the discovery will lead to new treatments for the roughly 50,000 people struck with colorectal cancer each year in the United States. Researchers are enthusiastic because in addition to having the marine bacteria as a natural source of the chemical, they have been able to synthetically produce the active chemical compound extracted from the bacteria.

read more

UF marine researchers rush to collect samples as oil threat grows

In a race against time, University of Florida marine researchers are hurrying to collect underwater marine algae samples in the Florida Keys while an ever-growing Gulf oil spill steadily migrates toward Florida, already reaching the Emerald Coast in the Panhandle.

read more

UF researchers discovery may help the human body self heal

Hendrik Luesch collaborating with researchers at Harvard and Scripps, published his findings. Researchers from the University of Florida have discovered a molecule that may help enhance our body’s natural antioxidant self-healing powers without the help of vitamins. This discovery could potentially help people stay healthy and disease free.

View the news video here http://news.health.ufl.edu/2010/14224/multimedia/uf-researchers-discovery-may-help-the-human-body-self-heal/

read more

UF pharmacy professor recognized as an outstanding leader in distance learning

As the University of Florida Forensic Science master’s program reaches its 10th year, its director is being recognized for his leadership in advancing distance learning through online technology in higher education.

read more