1. A patient with liver failure was given 200mg of a drug as an IV bolus injection. The plasma concentrations at 2 hours and 8 hours after injection were 2.68mg/L and 0.81mg/L respectively. The drug is eliminated by hepatic metabolism which is 5.32L/h, and also renal excretion via only glomerula filtration. (Use 130ml/min for glomerula filtration rate). Determine C_0, Vd, Cl, Cl_{ren} (renal clearance) and plasma protein binding. (2.5 points, 0.5 each)

2. Predict the half life of a 65 year old, 5’8’’ tall, 80 kg male patient, who is on aminoglycoside treatment. The serum creatinine level was determined to be 1.5mg/dL. (Hint: use Cockcroft-Gault equation for creatinine clearance, and the equation $Ke=0.00293*CrCl + 0.014$ for aminoglycoside) (2.5 points)

3. TRUE (T) or FALSE (F) (2 points, 0.5 each)

The glomerula filtration rate (GFR) is the maximum value of renal clearance

T F

Fluid is filtered across the glomerulus through passive diffusion

T F

Both bound and unbound drug can be filtered.

T F

Highly ionized substances tend to remain in the urine.

T F
4. Please predict how the following parameters will change when the liver blood flow is increased in a patient

(1) when taking a high extraction drug (1.5 points, 0.5 each)
 - the extraction ratio (E)
 - the clearance (Cl)
 - oral bioavailability (F)

(2) when taking a low extraction drug (1.5 points, 0.5 each)
 - the extraction ratio (E)
 - the clearance (Cl)
 - oral bioavailability (F)