1a. What are the two pharmacokinetic parameters that are evaluated in a bioequivalence study whose log-transformed ratios (test:reference) must pass the two one-sided test about the 90% confidence intervals? **1 pt**

AUC and Cmax

1b. What is the lower and upper value of this interval?

80-125% or 0.80 – 1.25

2. An investigational new drug is eliminated entirely by liver (hepatic) metabolism, with a clearance of 1.40 L/min in subjects with an average liver blood flow of 1.50 L/min. Is it possible to calculate the drug’s approximate clearance in a congestive heart failure patient with a liver blood flow of 1.0 L/min but no change in hepatic extraction ratio? If yes, what’s the clearance, if no, explain why? **2 pts**

Yes it is possible.

We know that

\[E = \frac{CL_i \cdot fu}{Q_H + CL_i \cdot fu} \]

\[CL = Q_H \cdot E = Q_H \cdot \frac{CL_i \cdot fu}{Q_H + CL_i \cdot fu} \]

\[1.4 = 1.5 \cdot \frac{CL_i \cdot fu}{1.5 + CL_i \cdot fu} \]

Solving this we get

\[CL_i \cdot fu = 21 \text{ L/min} \]

Now with new liver blood flow of 1 L/min …….. \[Q_H (\text{new}) = 1 \text{ L/min} \]

\[E_{(\text{new})} = \frac{CL_i \cdot fu}{Q_H (\text{new}) + CL_i \cdot fu} \]

\[E_{(\text{new})} = \frac{21}{1 + 21} = 0.954 \]

\[Cl_{\text{hep}} = 1 \cdot 0.954 = 0.954 \text{ L/min} \]

However with such a high extraction ratio, one could assume negligible change in its value with the decreased liver blood flow and assume it to remain same and may use the following method:

\[Cl_{\text{hep}} = Q_H \cdot E \]

\[E = Cl_{\text{hep}} / Q_H = 1.4 / 1.5 = 0.933 \]

For CHF patient: \[Q_H = 1.1 \text{ L/min} \]

\[Cl_{\text{hep}} = Q_H \cdot E = 1.0 \text{ L/min} \cdot 0.933 = 0.933 \text{ L/min} \]
Note that the change in E is practically negligible. So you could use the same E. But if you wanted to calculate the exact amounts one could calculate the change in E with change in liver blood flow. **Either of the answers will be accepted.**

3. Define the pharmacokinetic parameters V_{dss} and V_{darea} and explain, why V_{dss} is always smaller than V_{darea}. **3 pts**

V_{dss} Volume of distribution at steady state
Central and peripheral compartment are in equilibrium (equal unbound concentrations)

V_{darea} Volume of distribution during the elimination phase. There is a concentration gradient from the peripheral to the central compartment. (unbound concentration is higher in the peripheral compartment, lower in the central compartment)
Lower concentration in central compartment \rightarrow larger Vd

Hence $\rightarrow V_{dss} < V_{darea}$

4. A drug showed increase in tissue binding due a clinical condition. The pharmacist is of the opinion that the drug clearance remains the same but some other parameter changes. Is the pharmacist correct? Explain why? **2 pts**

Yes, the pharmacist is right

$V_d = V_B + \left(\frac{f_{u}}{f_{uT}} \right) * V_T$

With increase in tissue binding, f_{uT} decreases and Vd increases
- Clearance and bioavailability are not changed
- Half-life is increased due to increase in Vd (decrease in K_e)

5. In general, what are the reasons an oral dosage form will have <100% bioavailability (List 3 reasons)? **1 pt**

- Solubility/dissolution rate
- Degradation
- P-glycoprotein
- Incomplete active transport
- First-pass effect
- Poor permeability
6. Chronic liver disease causes a 50% decrease in verapamil clearance. However, half-life of verapamil increases 4 fold in chronic liver disease. Clearly the volume of distribution has changed due to the chronic liver disease. What is the volume of distribution of verapamil in a patient with chronic liver disease? (Healthy population values: CL= 50L/h; VD= 300 L) 1 pt

Healthy CL = ke · Vd
50 = ke · 300 L
ke = 0.167 L/h
t1/2 = 4.15 h (or 4 hrs)
Hepatic CL 50% = 25 L/h
If t1/2 = 16.6 (or 16 -17 hrs)

Vd = CL/ke = 25 /(0.693/16.6) = 599 L (613 L)