1. A 100 kg patient is to be treated p.o. with sodium phenytoin capsules. Assuming a phenytoin volume of distribution of 0.7 L/kg, Km of 4 mg/L and Vmax of 7 mg/kg/day, calculate the following:
 a. The loading dose to produce an initial concentration of 18 mg/L. How would you administer this dose?
 b. The daily maintenance dose to produce an average steady state concentration of 15 mg/L.

 a.

 \[Vd = 0.7L/kg \cdot 100kg = 70L \]

 \[LD = \frac{Cp \cdot Vd}{S \cdot F} = \frac{18mg/L \cdot 70L}{0.92 \cdot 1} = 1369.57mg \approx 1300mg \]

 The dose is given as a 400mg dose, followed by three 300mg doses at two-hour intervals to decrease the possibility of nausea and vomiting which may be associated with a single large dose.

 b.

 \[MD = \frac{Vm \cdot Cpss \cdot \tau}{(Km + Cpss) \cdot S \cdot F} = \frac{7mg/kg/day \cdot 100kg \cdot 15mg/L \cdot 1day}{(4mg/L + 15mg/L) \cdot 0.92 \cdot 1} = 600.69mg \approx 600mg \]
2. A phenytoin patient has a plasma concentration of 10mg/L at 300mg/day and 25mg/L at 400mg/day. Using graph paper, determine the Km and Vmax as well as the dose needed to produce a concentration of 15mg/L.

Dose needed to produce a concentration of 15mg/L ⇒ 350mg/day
3. W.R., a 39-year-old, 70kg male, developed generalized seizures several months after an automobile accident in which he sustained head injuries. Phenobarbital is to be initiated. Calculate a loading dose of Phenobarbital that will produce a plasma level of 20mg/L. Calculate an oral maintenance dose for W.R. which will maintain a Phenobarbital concentration of 20mg/L. How should the dose be administered? If W.R. does not receive a loading dose, how long will it take to achieve a minimum therapeutic level of 10mg/L following the initiation of the maintenance dose? How long will it take to achieve a steady-state level of 20mg/L?

\[
LD = \frac{Cp \cdot Vd}{S \cdot F} = \frac{20 \text{mg/L} \cdot 0.7 \text{L/kg} \cdot 70 \text{kg}}{1 \cdot 1} = 980 \text{mg} \equiv 1 \text{g}
\]

\[
MD = \frac{Cp \cdot Cl \cdot \tau}{S \cdot F} = \frac{20 \text{mg/L} \cdot 0.1 \text{L/kg/day} \cdot 70 \text{kg} \cdot 1 \text{day}}{1 \cdot 1} = 140 \text{mg}
\]

\[
t_{1/2} = \frac{0.693 \cdot 49}{7} = 4.85 \text{ days} \approx 5 \text{ days}
\]

dose is usually divided into 2 portions, but with a half-life of 5 days once daily should be fine

No LD, how long will it take to achieve a minimum therapeutic level of 10mg/L?

\[
k_e = \frac{0.693}{5} = 0.139 \text{ days}^{-1}
\]

\[
t = \frac{\ln \left(\frac{C_{\text{max}}}{C_{\text{min}}} \right)}{k_e} = \frac{\ln \left(\frac{20}{10} \right)}{0.139} = 4.99 \text{ days} \approx 5 \text{ days}
\]

steady-state after 3-5 half-lives \(\Rightarrow \) \(t_{1/2} = 5 \text{ days} \)

\(\Rightarrow \) after 15-25 days \(\Rightarrow \) \(C_{\text{ss}} = 20 \text{mg/L} \)
4. A patient (35 years old, 65 kg) is to be started on intravenous phenobarbital sodium. The therapeutic range is 10-30 mg/L. A loading dose is given so as to yield a \(C_{p0}\) of 30 mg/L. Calculate this loading dose and the daily maintenance dose to produce an average steady state concentration of 20 mg/L.

\[
LD = \frac{Cp \cdot V_d}{S \cdot F} = \frac{30 \text{mg/L} \cdot 0.7 \text{L/kg} \cdot 65 \text{kg}}{1 \cdot 1} = 1365 \text{mg} \approx 1.3 \text{g}
\]

\[
MD = \frac{Cp \cdot Cl \cdot \tau}{S \cdot F} = \frac{20 \text{mg/L} \cdot 0.1 \text{L/kg/day} \cdot 65 \text{kg} \cdot 1 \text{day}}{1 \cdot 1} = 130 \text{mg}
\]
5. M.W. is a 50-year-old, 70kg male with glomerular nephritis. His creatinine clearance is reasonably good, but he has a serum albumin concentration of 2.2g/dL. M.W. is receiving 350mg/day of phenytoin and has a steady-state phenytoin concentration of 6mg/L. What would be his phenytoin concentration be if his serum albumin concentration were normal? (normal serum albumin=4.4g/dL).

\[
C_{P\text{normal}} = \frac{C_{p'}}{(1-\alpha) \cdot \frac{\text{Patient's Albu min}}{\text{Normal Albu min}}} + 0.1 = \frac{6\text{mg} / \text{L}}{(1-0.1) \cdot \frac{2.2\text{g} / \text{dL}}{4.4\text{g} / \text{dL}}} + 0.1 = 10.91\text{mg} / \text{L}
\]