1. Drug X follows a one-compartment model after an IV bolus administration. The half-life of drug X is 0.693 hour, the volume distribution is 150 L and \(f_u \) is 0.5. There are multiple routes for the elimination of drug X. We know that filtration is the only factor involved in renal elimination (no re-absorption or secretion). Assume GFR is 130mL/min.
 a. Calculate the elimination rate constant \(k_e \)
 b. Calculate the total clearance
 c. Calculate the renal clearance and the renal elimination rate constant \(k_{\text{eren}} \)
 d. Calculate the non-renal clearance
 e. Besides renal elimination, is it possible that hepatic elimination is the only other route of elimination? Why?

2. Drug Y follows a one-compartment model after an IV bolus administration. 66 mg is given to a 70kg male patient by IV bolus. The concentrations at 0.5 and 3 hours are 0.236 \(\mu \)g/mL and 0.042 \(\mu \)g/mL, respectively.
 a. Calculate the elimination rate constant \(k_e \)
 b. Calculate \(C_0 \)
 c. Calculate \(V_d \)
 d. Calculate the total clearance
 e. Calculate \(\text{AUC}_{0-\infty} \)
 f. If the drug is given twice daily (8 a.m. and 8 p.m.)), the concentration at noon of day 30 is 0.021 \(\mu \)g/mL. What will be the concentration right before the second dose of that day (8 p.m.)?

3. How will the following parameters change (increase ↑, decrease ↓, no change ↔) for a low extraction drug which also undergoes renal elimination if \(f_u \) change from 0.2 to 0.8?
 a. \(V_d \)
 b. \(E_H \) (hepatic extraction ratio)
 c. \(F \) (oral bioavailability)
 d. \(CL_H \) (hepatic clearance)
 e. \(CL_{\text{eren}} \)
 f. \(CL_{\text{tot}} \)
 g. \(\text{AUC}_{0-\infty} \)

Note: PLEASE circle your final answer for each question.